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Chapter 13
RADIATION HEAT TRANSFER



Objectives

Define view factor, and understand its importance in radiation
heat transfer calculations

Develop view factor relations, and calculate the unknown
view factors in an enclosure by using these relations

Calculate radiation heat transfer between black surfaces

Determine radiation heat transfer between diffuse and gray
surfaces in an enclosure using the concept of radiosity

Obtain relations for net rate of radiation heat transfer between
the surfaces of a two-zone enclosure, including two large
parallel plates, two long concentric cylinders, and two
concentric spheres

Quantify the effect of radiation shields on the reduction of
radiation heat transfer between two surfaces, and become
aware of the importance of radiation effect in temperature
measurements



THE VIEW FACTOR
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FIGURE 13-1

Radiation heat exchange between sur-
faces depends on the orientation of the
surfaces relative to each other, and this
dependence on orientation is accounted
for by the view factor.

View factor is a purely geometric quantity
and is independent of the surface
properties and temperature.

It is also called the shape factor,
configuration factor, and angle factor.

The view factor based on the assumption
that the surfaces are diffuse emitters and
diffuse reflectors is called the diffuse view
factor, and the view factor based on the
assumption that the surfaces are diffuse
emitters but specular reflectors is called
the specular view factor.

F; the fraction of the radiation leaving
surface i that strikes surface | directly

The view factor ranges between 0 and 1.



To develop a general expression for the view factor, consider two differen-
tial surfaces dA, and dA, on two arbitrarily oriented surfaces A; and A,.
respectively, as shown in Fig. 13-2. The distance between dA,; and dA, is 1,
and the angles between the normals of the surfaces and the line that connects
dA, and dA, are ¢, and #,, respectively. Surface 1 emits and reflects radiation
diffusely in all directions with a constant intensity of 7;, and the solid angle
subtended by dA, when viewed by dA, 1s dw,,.

The rate at which radiation leaves dA, in the direction of 6, is I, cos #,dA,.
Noting that dw,, = dA, cos 8,/1%, the portion of this radiation that strikes dA, is

dA, cos #,

Qdﬂ’;l—-d&: 1’[ COs HldAldE.’ng = 1’[ COs HldAl—z (13-1)
) r

The total rate at which radiation leaves dA, (via emission and reflection) in all
directions is the radiosity (which is J;, = «1,) times the surface area,

Qu, =J dA, = wl dA,

FIGURE 13-2

Geometry for the determination of the
view factor between two surfaces.



Then the differential view factor dF 44 _ d,, which is the fraction of radiation
leaving dA, that strikes dA, directly, becomes

"i»’ dd, = 44, COS | COs #,
dF gy ogp, = ———— = ———= dA, (13-3)
] aa, e

The differential view factor dF g, _ 44, can be determined from Eq. 13-3 by
interchanging the subscripts 1 and 2.

The view factor from a differential area dA, to a finite area A, can be deter-
mined from the fact that the fraction of radiation leaving dA, that strikes A, is
the sum of the fractions of radiation striking the differential areas dA,. There-
fore, the view factor Fgy _ 4 is determined by integrating dF gz, _ 44 OVer A,,

COs ”I COS H_-_.
FLLJJI_._.J“ - 3 (i'lr"jl_'_- '“3—'4}
) JAL wE*©

The total rate at which radiation leaves the entire A, (via emission and reflec-
tion) 1n all directions 1s

Q‘j” = JIAI = 1']'1’1]11 (13-5)

The portion of this radiation that strikes dA, is determined by considering the
radiation that leaves dA,| and strikes dA, (given by Eq. 13-1), and integrating
it over A,.

[ I, cos #,cos B, dA,

Qd“il_'d:"lz = J 2 dAl (13-6)
A, r

QAL —~dd; = J

Ay

FIGURE 13-2

Geometry for the determination of the
view factor between two surfaces.



Integration of this relation over A, gives the radiation that strikes the entire A,

J I, cos B, cos B,
A,

Qa s, = J Ay dA, (13-7)

A,

rE

Osn |

A,

Dividing this by the total radiation leaving A, (from Eq. 13-5) gives the frac-
tion of radiation leaving A, that strikes A,, which is the view factor Fy _ 4 (or
F, for short),

[ cos # cos #,

fi'r.r"jl| fi'r.r"jl_'_- {13—3}

pl

The view factor F _. 4, is readily determined from Eq. 13-8 by interchanging
the subscripts 1 and 2,

" cos f) cos

Fyyp=F4 s = ] -
(_;j“ 2

O 4y, -'
St J dA, dA, (13-9)
4

Ja, wr

Note that I, is constant but r, #,, and 6, are variables. Also, integrations can be
performed in any order since the integration limits are constants. These rela-
tions confirm that the view factor between two surfaces depends on their rela-
tive orientation and the distance between them.

Combining Eqgs. 13-8 and 13-9 after multiplying the former by A, and the
latter by A, gives

A|F|_‘_- = .-"ji_'_-F_'_-| {13—10}

which is known as the reciprocity relation for view factors. It allows the calcu-
lation of a view factor from a knowledge of the other.

FIGURE 13-2

Geometry for the determination of the
view factor between two surfaces.
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FIGURE 13-3

The view factor from a surface to itself
is zero for plane or convex surfaces and
nonzero for concave surfaces.

: ; = the fraction of radiation leaving surface i that strikes itself directly

FIGURE 134

In a geometry that consists of two con-
centric spheres, the view factor F; ., = 1
since the entire radiation leaving the
surface of the smaller sphere is inter-
cepted by the larger sphere.



The view factor has proven to be very useful in radiation analysis
because it allows us to express the fraction of radiation leaving a
surface that strikes another surface in terms of the orientation of

these two surfaces relative to each other.

The underlying assumption in this process is that the radiation a
surface receives from a source is directly proportional to the
angle the surface subtends when viewed from the source.

This would be the case only if the radiation coming off the
source is uniform in all directions throughout its surface and the
medium between the surfaces does not absorb, emit, or scatter
radiation.

That is, it is the case when the surfaces are isothermal and
diffuse emitters and reflectors and the surfaces are separated by
a nonparticipating medium such as a vacuum or air.

View factors for hundreds of common geometries are evaluated
and the results are given in analytical, graphical, and tabular
form.



TABLE 13-1

View factor expressions for some common geometries of finite size (3-D)

Geomelry

Relation

Aligned parallel rectangles
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TABLE 13-2

View factor expressions for some infinitely long (2-D) geometries

Geometry

Relation

Parallel plates with midlines
connected by perpendicular line

i

Wi =w,/Land W, =w;/L

L
T | [(W; + W2 + 412 — (W, - W)? + 412
k | =i oW,
4 | j.
| w; »|
Inclined plates of equal width
and with a common edge
~ ]
f'f’-’f”f .1
W F,_,;=1-sin s
,-*"'N 7 Y 2
\ f’*'f,-*"'xi-‘. (o
Ty i
| W =
Perpendicular plates with a common edge
_
T W, (W, 2112
— 4 _ -
W; Fioj=5491+ W, I + | ™ ) ,>
l i
< w s
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TABLE 13-2

View factor expressions for some infinitely long (2-D) geometries

Three-sided enclosure

| € W; » |

Infinite plane and row of cylinders
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View factor between two aligned parallel rectangles of equal size.
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View Factor Relations

Radiation analysis on an enclosure consisting of N
surfaces requires the evaluation of N2 view factors.

Once a sufficient number of view factors are available,
the rest of them can be determined by utilizing some
fundamental relations for view factors.

1 The Reciprocity Relation

F, i #F,_; when A; F A,
_ reciprocit
AEF:'—}j_ jF;‘—}:‘ P y

relation (rule)

16



2 The Summation Rule

The sum of the view factors from surface i of an enclosure to all
surfaces of the enclosure, including to itself, must equal unity.

Surface i

3
EFI—}j:Fl—}I+Fl—}2+F

J=1

= 1

1 =3

The total number of view factors that need to be
evaluated directly for an N-surface enclosure is

N2 — [N+ IN(N — D] = INW - 1)

FIGURE 13-9
Radiation leaving any surface i of The remaining view factors can be
an enclosure must be intercepted determined from the equations that are
completely by the surfaces of the obtained by applying the reciprocity and
enclosure. Therefore, the sum of the summation rules.
the view factors from surface i to
each one of the surfaces of the 17

enclosure must be unity.



: EXAMPLE 12-1 View Factors Associated with Two Concentric
- Spheres

||
m Determine the view factors associated with an enclosure formed by two spheres,

m Shown in Figure 12-10.
|

N

= L

FIGURE 12-10

18



SOLUTION The view factors associated with two concentric spheres are to be
determined.

Assumpifions The surfaces are diffuse emitters and reflectors.

Analysis The outer surface of the smaller sphere (surface 1) and inner surface
of the larger sphere (surface 2) form a two-surface enclosure. Therefore, N = 2
and this enclosure involves N? = 2% = 4 view factors, which are Fyq, Fiz, Fop,
and Fz». In this two-surface enclosure, we need to determine only

INN-1)=1%x22—-1)=1

view factor directly. The remaining three view factors can be determined by the
application of the summation and reciprocity rules. But it turns out that we can
determine not only one but two view factors directly in this case by a simple
inspection:

Fy =10, since no radiation leaving surface 1 strikes itself

F.,=1, since all radiation leaving surface 1 strikes surface 2

Actually it would be sufficient to determine only one of these view factors by
inspection, since we could always determine the other one from the summation
rule applied to surface 1 as F; + F; = 1.

19



The view factor F, is deterﬁined-l_}}' applying the reciprocity relation to sur-
faces 1 and Z:

A1F12 = AaFy
which yields
A Aarri A
Fa= 3 Fa = —s % 1 = (7}

Finally, the view factor F, is determined by applying the summation rule to sur-
face 2:

and thus

20



3 The Superposition Rule

The view factor from a surface i to
a surface j is equal to the sum of
the view factors from surface i to
the parts of surface |. AF, o3 =AF L, HAF _;

F1—>{2‘3}:F1—>2+F1—>3

multiply by A,

apply the reciprocity relation

© (Ay + ADF 3y 1 = Aol + A5

Al t A,
Fo,3 51 = A, + A,

®

Fi on=F_+F_;

FIGURE 13-11

The view factor from a surface to a
composite surface is equal to the sum
of the view factors from the surface to
the parts of the composite surface. il



S EXAMPLE 12-2 Fraction of Radiation Leaving
through an Opening

Determine the fraction of the radiation leaving the base of the cylindrical en-
closure shown in Figure 12-12 that escapes through a coaxial ring opening
at its top surface. The radius and the length of the enclosure are , = 10 cm
and L = 10 cm, while the inner and outer radii of the ring are r, = 5 cm and
r; = 8 cm, respectively.

e = —

< 22

FIGURE 12-12




SOLUTION The fraction of radiation leaving the base of a cylindrical enclosure
through a coaxial ring opening at its top surface is to be determined.
Assumptions The base surface is a diffuse emitter and reflector.

Analysis We are asked to determine the fraction of the radiation leaving the
base of the enclosure that escapes through an opening at the top surface.
Actually, what we are asked to determine is simply the wew factor F _, qny from
the base of the enclosure to the ring-shaped surface at the top.

We do not have an analytical expression or chart for view factors between a
circular area and a coaxial ring, and so we cannot determine F; _, . directly.
Howevier, we do have a chart for view factors between two coaxial parallel disks,
and we can always express a ring in terms of disks.

Let the base surface of radius r; = 10 cm be surface 1, the circular area of
r; = 5 cm at the top be surface 2, and the circular area of r; = 8 cm be sur-
face 3. Using the superposition rule, the view factor from surface 1 to surface 3
can be expressed as

Fio3=Fi, +Fl—rring_
since surface 3 is the sum of surface 2 and the ring area. The view factors F, _,,

and F, _, 5 are determined from the chart in Figure 12-7.

L _10cm _ 2 _ 5cm (Fig. 12-T)
= — e,

" 10cm : and I=|Elv::m='15 Fi2 =011

L _10cm _ fn_ Bcm _ (Fig. 12-T) B

- 10em —- .L_lli'_!lv.:m_lﬂl'E — = L=l
Therefaore,

Fl—ui.ng = F]_,,],_ F]_,,E =028 — 0.11 =0.17

which is the desired result. Mote that F, _. > and F, _, 5 represent the fractions of
radiation leaving the base that strike the circular surfaces 2 and 3, respectively,
and their difference gives the fraction that strikes the ring area.

23



4 The Symmetry Rule

Two (or more) surfaces that possess symmetry about a third
surface will have identical view factors from that surface.

If the surfaces j and k are symmetric about the surface i1 then
Fi=F_cand F_=F

JF]—:-E - F1_>3
(Also. FE_,] =F

FIGURE 13-13

Two surfaces that are symmetric about
a third surface will have the same view
factor from the third surface.

)

31
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EXAMPLE 12-3 View Factors Associated with a Tetragon

Determine the view factors from the base of the pyramid shown in Figure 17-14
to each of its four side surfaces. The base of the pyramid is a sgquare, and its
side surfaces are isosceles triangles.

FIGURE 12-14 25



SOLUTION The view factors from the base of a pyramid to each of its four side
surfaces for the case of a square base are to be determined.

Assumptions The surfaces are diffuse emitters and reflectors.

Analysis The base of the pyramid (surface 1) and its four side surfaces (sur-
faces 2, 3, 4, and 5) form a five-surface enclosure. The first thing we notice
about this enclosure is its symmetry. The four side surfaces are symmetric
about the base surface. Then, from the symmetry rule, we have

Fip=Fp=Fiy=Fs

Also, the summation rule applied to surface 1 yields

5
EFh‘:FIJ+FL1+F|3+F14+F15=1

=1

However, F,; = 0, since the base is a flat surface. Then the two relations
above yield

Discussion Mote that each of the four side surfaces of the pyramid receive
one-fourth of the entire radiation leaving the base surface, as expected. Also
note that the presence of symmetry greatly simplified the determination of the
view factors.

26



: EXAMPLE 124 View Factors Assoclated with a Triangular Duct

: Determine the view factor from any one side to any other side of the infinitely
@ long triangular duct whose cross section is given in Figure 12-15.

FIGURE 12-15

27



B SOLUTION The view factors associated with an infinitely long triangular duct
are to be determined.

Assumptions The surfaces are diffuse emitters and reflectors.

Analysis The widths of the sides of the triangular cross section of the duct are
Ly, L, and [, and the surface areas corresponding to them are A,, Az, and As,
respectively. Since the duct is infinitely long, the fraction of radiation leaving
any surface that escapes through the ends of the duct is negligible. Therefore,
the infinitely long duct can be considered to be a three-surface enclosure,
N = 3.

This enclosure involves N2 = 32 = 9 view factors, and we need to determine

INN-1)=1%x33-1)=3

of these view factors directly. Fortunately, we can determine all three of them by
inspection to be

Fjy=Fy=F;=0

since all three surfaces are flat. The remaining six view factors can be defer-
mined by the application of the summation and reciprocity rules.
Applying the summation rule to each of the three surfaces gives

Fyu+Fypt+Fyp=1
Fy + F5+Fyy=1

Noting that F,, = F;; = F33 = 0 and multiplying the first equation by A,, the
second by A, and the third by A5 gives
A+ AF = A

AFy + AFn = Ay
AyFy + AyFy = Ay

28



Finally, applying the three reciprocity relations A,F,; = AsF;,, AjF 3 = AsF3,,
and A;F.; = A;F5; Bives

AFp + A F R = A,
AF + A FR = Ay
AF + AFy = Ay

This is a set of three algebraic equations with three unknowns, which can be

solved to obtain

_A|_+.|4:_A1_I..| +I‘I_I".-'|

Fua 24, 2L,

F _ Al + 143 - .."*.1 _ I..| == I‘J. - I.-z
13 2A, 2L,
= 24, T

{12-15)

29



View Factors between
Infinitely Long Surfaces: The
Crossed-Strings Method

Channels and ducts that are very
long in one direction relative to the
other directions can be considered
to be two-dimensional.

These geometries can be modeled
as being infinitely long, and the view
factor between their surfaces can be
determined by simple crossed-
strings method.

FIGURE 13-16

Determination of the view factor

(s + Lo) — (Ly + Ly)

F,_, 5 F, _., by the application of the
- 2L, crossed-strings method.
P 2 (Crossed strings) — 2 (Uncrossed strings)

1= 2 X (String on surface 1) 30



S EXAMPLE 12-5 The Crossed-Strings Method for View Factors

Two infinitely long parallel plates of widths 2 = 12 cmand b = 5 cm are lo-
cated a distance ¢ = & cm apart, as shown in Figure 12-17. (8} Determine the
view factor F, _, > from surface 1 to surface 2 by using the crossed-strings
method. {b) Derive the crossed-strings formula by forming triangles on the given
geometry and using Eq. 12-15 for view factors between the sides of triangles.

If (@ -
o P
s N
'\.‘,.:'% %
L] .-.r - " ""'_" ‘_j'-;
{1 r';'lh
c=hcm \
-'- "h'\._
A 'Ik_l,':l',"' B
a=L;=12cm
FIGURE 12-17

31



SOLUTION The view factors between two infinitely long parallel plates are to

be determined using the crossed-strings method, and the formula for the view
factor is to be derived.

Assumptions The surfaces are diffuse emitters and reflectors.

Analysis (a) First we label the endpoints of both surfaces and draw straight
dashed lines between the endpoints, as shown in Figure 12-17. Then we iden-
tify the crossed and uncrossed strings and apply the crossed-strings method
(Eq. 12-17) to determine the view factor F, _ .-

_ 2 (Crossed strings) — & (Uncrossed strings)  (Ls + Lg) — (L; + L)
= 2 % (String on surface 1) B 2L,

where

Ly=a=12cm Li=vT+6=922cm
I,=b=5cm L:=+/5+6"=T781cm
IL,=c=6cm L.=+12+ 6 = 1342 cm

substituting,

F _ [(7.81 +13.42) — (6 + 9.22)] cm _
I 2% 12cm -

0.250

32



(b)) The geometry is infinitely long in the direction perpendicular to the plane of
the paper, and thus the two plates (surfaces 1 and 2) and the two openings
(imaginary surfaces 3 and 4) form a four-surface enclosure. Then applying the
summation rule to surface 1 yields

FuntFptF;+F,=1

But F; = Osince it is a flat surface. Therefore,

Fia=1—F3— Fu

where the view factors F,3 and F4 can be determined by considering the trian-
gles ABC and ABD, respectively, and applying Eq. 12-15 for view factors be-
tween the sides of triangles. We obtain

Iy +L;— Lg I+ Ly—Ls
13 = 2L| - 14 = 2.[.1

substituting,
. [I-:'- -+ I—-ri] - |I._1 + I_._-l:l
a 2L,

Fi.=1

which is the desired result. This is also a miniproof of the crossed-strings
method for the case of two infinitely long plain parallel surfaces.
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RADIATION HEAT TRANSFER: BLACK SURFACES

FIGURE 13-18

Two general black surfaces maintained

at uniform temperatures 7, and 7.

The net radiation
heat transfer from
any surface i ofan N
surface enclosure is

0. =

f

When the surfaces involved can be
approximated as blackbodies because of the
absence of reflection, the net rate of radiation
heat transfer from surface 1 to surface 2 is

Radiation leaving
» = | the entire surface |
that strikes surface 2

Radiation leaving
the entire surface 2
that strikes surface 1

=AEy, Fy L, AL, F, (W)
AF, _,=AF, .| E, = oT*
reciprocity relation  emissive power
O,_.,=AF, _,oT}—T$ (W)

A negative value for Q, _, , indicates that net
radiation heat transfer is from surface 2 to surface 1.

_IH".-'r _-H".'r

S AF T -TH W)

34




: EXAMPLE 12-6 Radiation Heat Transfer in a Black Furnace

: Consider the 5m » 5-m > 5m cubical furnace shown in Figure 12-19, whose
= Surfaces closely approximate black surfaces. The base, top, and side surfaces
m Of the furnace are maintained at uniform temperatures of 800 K, 1500 K, and
m 00 K, respectively. Determine (a) the net rate of radiation heat transfer be-
™ tween the base and the side surfaces, (b) the net rate of radiation heat transfer
® between the base and the top surface, and (c) the net radiation heat transfer
: from the base surface.

FIGURE 12-19
35



m SOLUTION The surfaces of a cubical furnace are black and are maintained at

uniform temperatures. The net rate of radiation heat transfer between the base
and side surfaces, between the base and the top surface, from the base surface
are 1o be determined.

Assumptions The surfaces are black and isothermal.

Analysis (a) Considering that the geometry involves six surfaces, we may be
tempted at first to treat the furnace as a six-surface enclosure. However, the
four side surfaces possess the same properties, and thus we can treat them as
a single side surface in radiation analysis. We consider the base surface to be
surface 1, the top surface to be surface 2, and the side surfaces to be surface
3. Then the problem reduces to determining &, _ 5, @, and Q,.

The net rate of radiation heat transfer @, _, 5 from surface 1 to surface 3 can
be determined from Eq. 12-19, since both surfaces involved are black, by re-
placing the subscript 2 by 3:

El—d = A1Fy L 2or(TV — Tﬂ

But first we need to evaluate the view factor F, _, ;. After checking the view fac-
tor charts and tables, we realize that we cannot determine this view factor di-
rectly. However, we can determine the view factor F, _, , directly from Figure
12-5to be F, _,; = 0.2, and we know that F, , = O since surface 1 is a
plane. Then applying the summation rule to surface 1 yields

FiohwvtFo:t+Fios=1

36



Substituting,

0,3 = (25 m*)(0.8)(5.67 > 1078 W/m? - K*)[(800 K)* — (500 K)*]
=304 x 10° W = 34 kKW

(0) The net rate of radiation heat transfer E"] _, 2 from surface 1 to surface 2 is
determined in a similar manner from Eqg. 12-19 o be

ﬂl—r! = AF, L 0o(TF = T5)
= (25 m*W0.205.67 x 1078 W/m? - KY)[(800 K)* — (1500 K)]
= —13M9?= 10PW=—1312 kKW

The negative sign indicates that net radiation heat transfer is from surface 2 to
surface 1.
(c) The net radiation heat transfer from the base surface {ﬁ] Is determined from
Eqg. 12-20 by replacing the subscript / by 1 and taking ¥ = 3:
3 - - - -
= 2 G ji=01at Giaat+ Qs
i=1

=0+ (—1319 kW) + (394 kW)
= —925 kW

Again the negative sign indicates that net radiation heat transfer is fosurface 1.
That is, the base of the furnace is gaining net radiation at a rate of about
925 kW.
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RADIATION HEAT TRANSFER: DIFFUSE,
GRAY SURFACES

« Most enclosures encountered in practice involve nonblack
surfaces, which allow multiple reflections to occur.

- Radiation analysis of such enclosures becomes very
complicated unless some simplifying assumptions are made.

* Jtis common to assume the surfaces of an enclosure to be
opague, diffuse, and gray.

« Also, each surface of the enclosure is isothermal, and both
the incoming and outgoing radiation are uniform over each

surface.
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Radiosity For a surface i that is gray and
opaque (5=« and o; + p=1)

Radiosity J: The total J = (Radiation emitted) n (Racliation 1‘eﬂected>
radiation energy_legving " by surface i by surface i

a surface per unit time = ¢,E, + p;G,

and per unit area. , _—

Radiosity, J
: - For a blackbody ¢ =1

Incident Reflected  Emitted

radiation radiation  radiation JJ{ — E,h_.- = r:r'T_l_‘1 {IZWIEIL‘HZ‘*UL]};}
E\_ 7 P . .
G\ / / The radiosity of a blackbody is
\ / / equal to its emissive power since
\.._\ / / radiation coming from a blackbody
/ / is due to emission only.
Surface

FIGURE 13-20

Radiosity represents the sum of the

radiation energy emitted and reflected

by a surface. 39



Net Radiation Heat Transfer to or from a Surface

- { Radiation leaving Radiation incident The net rate of
Q= - radiation heat transfer

on entire surface i .
from a surface i

entire surface i

: Ji — &k, Ag; .
Qi:Ai J:'_ l — g — l _8_(Eb£_J£) (VS‘)
Q = By = J, (W) R = | =&, surface resistance
R, o A.e; to radiation.
0, The surface resistance to radiation for a

Ey; T ol blackbody is zero since ¢ =1 and J, = E,,.
- g Reradiating surface: Some surfaces are

Surface ki= Ag; modeled as being adiabatic since their back sides
’ are well insulated and the net heat transfer

FIGURE 13-21 through them is zero.
Electrical analogy of surface J.=E, =cT} (W/m2)

!

resistance to radiation. 40




Net Radiation Heat Transfer between Any Two Surfaces

o The net rate of Radiation leaving Radiation leaving
radiation heattransfer ) = | the entire surfacei | — [ the entire surface j
from surfaceito '’ : L . .
- that strikes surface j that strikes surface 1
surface j is
Surface j =AiE L A E (W)
\Z/ AF; ;= AF,;_; Apply the reciprocity relation
=~ : T
§R- Qi—};_A:F:—:-J J _J) (W)
J. + Ji—J;
) ) — ' N
! Q:‘ —J R. .. (W )
j ‘\13: R F—)_‘Jf
= T A-F-- :
Py R .= | Space resistance
J; ‘=/ A, F;_; toradiation

FIGURE 13-22
Electrical analogy of space resistance
E i ' . L 41

bi Surface i to radiation.



In an N-surface enclosure, the conservation of energy principle requires
that the net heat transfer from surface i be equal to the sum of the net heat
transfers from surface i to each of the N surfaces of the enclosure.

N N J J
0; = S AR U= e R (W)
= 1 =1 =1 17
J J= Ji=
"J]
[ N _
x E bi J i J’ JJ
~ S —
P R R. .
0 SR, Ja E j=1 17
| ; .
f J: /e
E hi AMAAA I{::" A 3 L
R. \ g, The net radiation flow from a
i S V. -
Z=7 ey, , surface through its surface
Surface i 7 resistance is equal to the sum of
K‘,r the radiation flows from that surface
N

to all other surfaces through the
FIGURE 13-23 corresponding space resistances.

Network representation of net
radiation heat transfer from surface i
to the remaining surfaces of an
N-surface enclosure. w2



Methods of Solving Radiation Problems

In the radiation analysis of an enclosure, either the temperature or the net rate
of heat transfer must be given for each of the surfaces to obtain a unique
solution for the unknown surface temperatures and heat transfer rates.

Surfaces with specified . '
net heat transfer rate Q Q; =4, ; Fi . .-‘-"r.- o ';.-*

N
Surfaces with specified oT4 = J + | E F (] —17)
femperature T; | i g L Ti=iY j

The equations above give N linear algebraic equations for the determination
of the N unknown radiosities for an N-surface enclosure. Once the radiosities
Ji,, J,, . .., Jy are available, the unknown heat transfer rates and the
unknown surface temperatures can be determined from the above equations.

Direct method: Based on using the above procedure. This method is
suitable when there are a large number of surfaces.

Network method: Based on the electrical network analogy. Draw a
surface resistance associated with each surface of an enclosure and
connect them with space resistances. Then solve the radiation problem
by treating it as an electrical network problem. The network method is not

: ) 43
practical for enclosures with more than three or four surfaces.



Radiation Heat Transfer in Two-Surface Enclosures

01
Ep, &} Ji %} J5 Q_E,.. Ep
AW Ao Ao
Rl=]_£] 12=—]— R2=]_Ez
Ag AF Aygy
FIGURE 13-24

Schematic of a two-surface enclosure
and the radiation network associated
with i1t.

le - Ql - _Qz
. Eb] _Ebz . .
Co=R +R,+R, 4~
4 .
a( T] TE} {\\r )
l _ (L_:] _|_ I _|_ l T (L:j

This important result is
applicable to any two gray,
diffuse, and opaque surfaces
that form an enclosure.
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TABLE 13-3

Radiation heat transfer relations for some familiar two-surface arrangments.

Small object in a large cavity

A . _ _
: Q1 =A08(T{-T7) (13-37)
Fi,=1
AE" Tgl. EE
Infinitely large parallel plates
ALT. g
A=A,=A o Aa(T-TH (13-38)
Fi,=1 oy + L
Ag. Tg. £y El 'Eﬂ
Infinitely long concentric cylinders
ry % ra
(2
A _n
AT, o _A0(TE-T4) (13-39)
L7 1-e ['rl)
Fp=1 g & \n
Concentric spheres
AJ F
(‘ As {.l"2 } Q _ALU[TJJ'— T (13-40)
2=

= -8 2
%+f[ l)
Ea = | oy
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i f.-".':ﬂMP.[f 12-7 Radiation Heat Transfer between Parallel Plates

Twn very large parallel plates are maintained at uniform temperatures T,

E'DD K and 7, = 500 K and have emissivities &; = 0.2 and &, = 0.7, respec-
| tl'u'El].f as shown in Figure 12-25. Determine the net rate of radiation heat trans-
m fer between the two surfaces per unit surface area of the plates.

FIGURE 12-25
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" SOLUTION Two large parallel plates are maintained at uniform temperatures.
The net rate of radiation heat transfer between the plates is to be determined.

Assumptions Both surfaces are opague, diffuse, and gray.
Analysis The net rate of radiation heat transfer between the two plates per unit

area is readily determined from Eq. 12-38 to be

Infinitely large parallel plates

"""I' TI.‘ I-_'-I

(12-38)

.r‘! o T.!" I-_'2

_ Q. oTf—TH _ (567 X 10—* Wim? - K*)[(800 K)* — (500 K)*]

g1z =
A1 1 1 |
ate ] oz to7 !

I

= 3625 Wim?

a7



Radiation Heat
Transfer in Three-

Surface Enclosures

When Q, is specified at
surface i instead of the
temperature, the term
(E,; — J)/R; should be
replaced by the
specified Q..

£.A,.T,

The algebraic
sum of the
currents (net
radiation heat
transfer) at each
node must equal
zero.

These equations are to be solved for J,, J,, and Js.

Ry;

Jo—=Jy  Epy— J;
_|_
R-':-'; R_g

o

Q] E, J| AF E,
— = MW ——WWWA » \,] M———e «—— (),
l—¢ \ 5 A / —Ca
R =— ‘I N N Ll
L™ Ae \ 23/ 27 Ae
=1 ZNQ Y 252
ZN\N"13 S
R A S I
- NS
13 A lF]3 <\\ f} Rg_ﬁ, AEFE_;
Draw a surface Iave
resistance - anch Schematic of a
a?sr?cu:lted Wit feac Z . _1-¢& three-surface
of the three surfaces =R~z enclosure and the
and connect them radiation network
W'th space Liie associated with it.
resistances. -
g,
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: EXAMPLE 12-8 Radiation Heat Transfer in a Cylindrical Furnace

: Consider a cylindrical furnace with r, = H =1 m, as shown in Figure 12-27.
a 1he top (surface 1) and the base (surface 2) of the furnace has emissivities
m ey = 0.8 and &; = 0.4, respectively, and are maintained at uniform tempera-
m tures 7; = 70O K and T; = 500 K. The side surface closely approximates a
® plackbody and is maintained at a temperature of T3 = 400 K. Determine the
® net rate of radiation heat transfer at each surface during steady operation and
: explain how these surfaces can be maintained at specified temperatures.

T, =700 K

D £, = 0.8
IrD

lo)
H Elack
T =400 K

am, ——

2 =500 K
£, = 0.4 49
FIGURE 12-27



SOLUTION The surfaces of a cylindrical furnace are maintained at uniform
temperatures. The net rate of radiation heat transfer at each surface during
steady operation is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The surfaces are opaque,
diffuse, and gray. 3 Convection heat transfer is not considered.

Analysis  We will solve this problem systematically using the direct method to
demonstrate its use. The cylindrical furnace can be considered to be a three-
surface enclosure with surface areas of

A=A, =7rl=w(l m)* =314 m?
A; = 2ar H = 2w(l m){1 m) = 6.28 m*

The view factor from the base to the top surface is, from Figure 12-7, F,; =
0.38. Then the view factor from the base to the side surface is determined by
applying the summation rule to be

F]]+F|1+F]:.|=I —F F]:.|=I_F|_|_F|_2=|._D_U.3'E=ﬂ.ﬁz
since the base surface is flat and thus Ff;; = 0. Noting that the top and bottom

surfaces are symmetric about the side surface, fF>; = F> = 0.38 and Fz3 =
F.; = 0.62. The view factor F;; is determined from the reciprocity relation,

AFs=AFy, — Fy= FaA/A;) = (0.62)(0.314/0.628) = 0.31

Also, Fsz = F3; = 0.31 because of symmetry. Mow that all the view factors are
available, we apply Eq. 12-35 to each surface to determine the radiosities:
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I_H]

Top surface (i = 1): ol =1, + [Fisa(d — B+ FiLa(h — 5]

|

I_EE

Eﬂﬁ'ﬂm .EI!J]'-ETE‘E {-f- = 2::' L‘Til = JE + E7 [Fl—i-| EJE - J]}' + Fl—'-]- I:JE - ..’3]]

Side surface (i = 3): aT+ = J; + 0 (since surface 3 is black and thus &; = 1)

Substituting the known quantities,
1 — 0.8
0.8

1 — 04
0.4

(5.67 % 107 Wim? - K*WT00 K)* = J, + [0.38(S, — J2) + 0680, — J3)]

(5.67 % 105 W/m? - K*)(500 K)* = J, + [0.28(J, — J,} + 0.68(J, — J)]

(3.67 > 10~* Wim? - K*)(400 K)* = J,
Solving the equations above for J,, J;, and J; gives

J, = 11418 Wim?, I, = 4562 Wim?, and J; = 1452 W/m?

Then the net rates of radiation heat transfer at the three surfaces are deter-
mined from Eqg. 12-34 to be

Oy =AF i oa(h — )+ Fios (U — B
= (3.14 mH)[0.38(11.418 — 4562) + 0.62(11.418 — 1452)] W/m?
=276 % 1P W =276 kKW

O, =AlF; (=) + F 5L — 1)
= (3.12 mH)[0.38(4562 — 11.418) + 0.62(4562 — 1452)] W/m?
= 213 x 10°PW = -2.13 kW

Oy =As[Fa_ (s — 0+ Fia(ds — 29
= (6.28 mH[0.31{1452 — 11.418) + 0.31(1452 — 4562)] W/m?
= _255x10PW=-2355kKW

Mote that the direction of net radiation heat transfer is from the top surface to
the base and side surfaces, and the algebraic sum of these three quantities
must be equal to zero. That is,

O+ 0z + 03=276+ (—2.13) + (—25.5) =0
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: EXAMPLE 12-9 Radiation Heat Transfer in a Triangular Furnace

: A furnace is shaped like a long equilateral triangular duct, as shown in Figure
g 1Z2-28. The width of each side is 1 m. The base surface has an emissivity of
m 0.7 and is maintained at a uniform temperature of 600 K. The heated left-side
m surface closely approximates a blackbody at 1000 K. The right-side surface is
B well insulated. Determine the rate at which heat must be supplied to the heated

¥ side externally per unit length of the duct in order to maintain these operating
¥ conditions.

— W AR -— 'Ez =— ;}1
T,= 000K : Ry N /
. Insulated Ny .
Black 3
R, 1122; & Ry
: &
/
\].:D £y = 0.7 v
T =600K Uy = Ey)
ﬂ_] =0
FIGURE 12-28

The triangular furnace
considered in Example 12-9.

52



SOLUTION Two of the surfaces of a long equilateral triangular furnace are
maintained at uniform temperatures while the third surface is insulated. The ex-
ternal rate of heat transfer to the heated side per unit length of the duct during
steady operation is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The surfaces are opaqgue,
diffuse, and gray. 3 Convection heat transfer is not considered.

Analysis The furnace can be considered to be a three-surface enclosure with a
radiation network as shown in the figure, since the duct is very long and thus
the end effects are negligible. We observe that the view factor from any surface
to any other surface in the enclosure is 0.5 because of symmetry. Surface 3 is
a reradiating surface since the net rate of heat transfer at that surface is zero.
Then we must have @, = —@d,, since the entire heat lost by surface 1 must
be gained by surface 2. The radiation network in this case is a simple series—
parallel connection, and we can determine {151 directly from

0, = 1 o ] —
1
R +(—+— —+(A Fpo +
I Ry R+ Rﬂ] Ay g \ L 1/A, Fi3 + 1/A, Fg)
where
Al=Aa=Ai=wl=1m*xIm=1m’ {per unit length of the duct)
Fi,=F;=F;=05 (symmetry)

E,, = oT# = (5.67 = 1072 Wim? - K*)(600 K)* = 7348 W/m?
E,, = oT} = (5.67 > 1078 Wim?® - K)(1000 K)* = 56,700 W/m?

Substituting,

. (56.700 — T348) W/m?
Co1-07 (0.5 X 1 m?) + ! -
07 x 1m? | 1405 X 1m?) + /(0.5 X 1 m?)

= 280 = 10 = 28.0 kW

Therefore, heat at a rate of 28 kW must be supplied to the heated surface per
unit length of the duct to maintain steady operation in the furnace.
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: EXAMPLE 12-10  Heat Transfer through a Tubular Solar Collector

: A solar collector consists of a horizontal aluminum tube having an outer diam-
g Eter of 2 in. enclosed in a concentric thin glass tube of 4-in. diameter, as shown
m In Figure 12-29, Water is heated as it flows through the tube, and the space
m Detween the aluminum and the glass tubes is filled with air at 1 atm pressure.
B The pump circulating the water fails during a clear day, and the water tempera-
® ture in the tube starts rising. The aluminum tube absorbs solar radiation at a
™ rate of 30 Btu/h per foot length, and the temperature of the ambient air outside
: s JO°F. The emissivities of the tube and the glass cover are 0.95 and 0.9,

respectively. Taking the effective sky temperature to be 50°F, determine the

temperature of the aluminum tube when steady operating conditions are
g 2stablished (i.e., when the rate of heat loss from the tube equals the amount of
m Solar energy gained by the tube).

Solar
Energy

WA s o

E =%

TO°F

o
2in -
\ f]uminum iube
[ g =095

Water

FIGURE 12-29
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SOLUTION The circulating pump of a solar collector that consists of a hori-
zontal tube and its glass cover fails. The eguilibrium temperature of the tube is
to be determined.

Assumpiions 1 Steady operating conditions exist. 2 The tube and its cover are
isothermal. 3 Air is an ideal gas. 4 The surfaces are opaque, diffuse, and gray
for infrared radiation. 5 The glass cover is transparent to solar radiation.

Froperties The properties of air should be evaluated at the average tempera-
ture. But we do not know the exit temperature of the air in the duct, and thus
we cannot determine the bulk fluid and glass cover temperatures at this point,
and thus we cannot evaluate the average temperatures. Therefore, we will as-
sume the glass temperature to be 110°F, and use properties at an anticipated
average temperature of (70 + 110)2 = 90°F (Table A-15E),

k = 10.01505 Bow'h - ft - °F Pr = 0.7275

]
T 550R

v = 0.6310 ft¥h = 1.753 > 10~* fi¥/s B = T]

Analysis This problem was solved in Chapter 9 by disregarding radiation heat
transfer. Now we will repeat the solution by considering natural convection and
radiation occurring simultaneously.

We have a horizontal cylindrical enclosure filled with air at 1 atm pressure.
The problem involves heat transfer from the aluminum tube to the glass cover
and from the outer surface of the glass cover to the surrounding ambient air.
When steady operation is reached, these two heat transfer rates must equal the
rate of heat gain. That is,

ﬂluhe-lglm = Elrlgl::.s-uml:li:nl = ;:'_Ii:n:llu.r gain 30 Btw'h {PET foot of tube)

The heat transfer surface area of the glass cover is

Ay = Agigs = (WD, L) = w412 fi)(1 ft) = 1.047 f* (per foot of tube)
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To determine the Rayleigh number, we need to know the surface temperature of
the glass, which is not available. Therefore, it is clear that the solution will re-
quire a trial-and-error approach. Assuming the glass cover temperature to be
110°F, the Rayleigh number, the Nusselt number, the convection heat transfer
coefficient, and the rate of natural convection heat transfer from the glass cover
to the ambient air are determined to be

r,—T.)I¥
Ranﬂ=gB{ - . =) ~Pr

(322 fUsH[1A(550 R)(110 — 70 R)(4/12 fi)°

0.7275) = 2.054 = 10¢
(1.753 > 10 fit¥fs)® (

0.387 Ra}® ? 0.387(2.054 x 10F)¥6 |2
Nu = [ﬂ'ﬁ T m_ﬁiqun'”wW} N [ﬂ o+ {ﬂ-j:‘sqm.?z?:‘s:n'?”“]w]
= 17.89
h, = Di Nu =220 B T (17.89) = 0.8075 Buvh - 2 - °F
O come = Mo AT, — To) = (0.8075 Bru/h - 2 - “F)(1.047 f2)(110 — 70)°F
= 33.8 Buvh

Also

'E}-El'. rad = Eau‘;"a-{Tj - Tsdi:}'}
= (0.9%0.1714 = 108 Baw'h - fi2 - RYO(L.047 fRH[(5TORY — (510 R)Y]
= 6:1.2 Bow'h

Then the total rate of heat loss from the glass cover becomes

O ot = O oy + Qo g = 33.8 + 61.2 = 95.0 Ba/h

which is much larger than 30 Btu/h. Therefore, the assumed temperature of
110°F for the glass cover is high. Repeating the calculations with lower tem-
peratures (including the evaluation of properties), the glass cover temperature
comresponding to 30 Btu/h is determined to be 78°F (it would be 10&6°F if radi-
ation were ignored).
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The temperature of the aluminum tube is determined in a similar manner
using the natural convection and radiation relations for two horizontal concen-
tric cylinders. The characteristic length in this case is the distance between the
two cylinders, which is

L.=(D,—D}2=(4—22=1lin. = /12 fi

Also,

A; = A, = (wD,L) = w(2 /12 fi)(1 ft) = 0.5236 fi? (per foot of tube)

We start the calculations by assuming the tube temperature to be 122°F, and
thus an average temperature of (78 + 122)/2 = 100°F = 640 R. Using prop-
erties at 100°F,

gB(T; — T )L
- Pr
2

_ (322 fUsH[14(640 R)](122 — 78 R)(1/12 fiy
(1809 x 107 filfs)?

Ra, =

(0.726) = 3.249 x 10¢

The effective thermal conductivity is

[In(D, /D]
ey [2(D7 + D75
[In(4/2)]*
= = ().1466
(1712 fi)® [(2/12 i)~ ¥ + (412 i)~ 35
Pr 114
= o LS 114
ks = 0.386k ('I].E.E-I T P‘r) (FoycRag)
.
= (.38600.01529 Btw'h - ft - ':'FI(ID 35?33 ?Eﬁ)l{ﬂ.ldﬁﬁ ® 3,240 x [(4)A

= (.04032 Buw'h - ft - °F
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Then the rate of heat transfer between the cylinders by convection becomes

. Dk o
i conv = m{ﬂ- — 1)
_ 2“*“‘“?3{5;"1 ) (122 — 78)°F = 16.1 Bruh
Also,
=TT

- | | - E, ﬂl’
58 (H)

[

_ (0.1714 > 107% Bw/h - ft* - RY)0.5236 fi*)[(582 R)* — (538 R)"]

| 4 | — D.Q(E n.
(.95 0.9 \4in.

= 25.1 Bw/h

Then the total rate of heat loss from the glass cover becomes

O; ot = O come + O g = 16.1 + 25.1 = 41.1 Btu/h

which is larger than 30 Btw/h. Therefore, the assumed temperature of 122°F for
the tube is high. By trying other values, the tube temperature corresponding
to 30 Btu/h is determined to be 112°F (it would be 180°F if radiation were
ignored). Therefore, the tube will reach an equilibrium temperature of 112°F
when the pump fails.
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RADIATION SHIELDS AND THE RADIATION
EFFECTS

Radiation heat transfer between two surfaces can be reduced greatly by
Inserting a thin, high-reflectivity (low-emissivity) sheet of material between

the two surfaces.
Such highly reflective thin plates or shells are called radiation shields.

Multilayer radiation shields constructed of about 20 sheets per cm
thickness separated by evacuated space are commonly used in cryogenic
and space applications.

Radiation shields are also used in temperature measurements of fluids to
reduce the error caused by the radiation effect when the temperature
sensor Is exposed to surfaces that are much hotter or colder than the fluid

itself.

The role of the radiation shield is to reduce the rate of radiation heat
transfer by placing additional resistances in the path of radiation heat flow.

The lower the emissivity of the shield, the higher the resistance.
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Ao(T} — T5) Radiation heat transfer

Q 12, no shield = 1 1 between two large
e, + e,  parallel plates

Radiation heat transfer between two large parallel plates with one shield

Em T Ebz

le,uneshie]d T l o E] l 1 —83,1 l _ 83,2 l N l _ 82

+ + +
Ay g A, Fi; Ai €3 Az &35 Az Fy; A &

(1) Shield (2)
T] Tﬂl Tﬂl TE
“ £3.1]] #32 £2 The radiation
— 0) >0, 0,——> shield placed
between
| | | | | | two parallel
| | | | | | plates and the
| | | | | | radiation
o L : - network
| | | | | | '
o l-g& 1 | _1 — €5 : _1 — €32 | 1 | _1 —& 3V?t3r]0§|ated
e A1 Fp3 | £31A3 | £30Ay A3 F3 L 84, '
| | I I | | |

o\ WwWW—O0—— AW O WWW—O-AMANAW—O———AWAA O—\WWW—0 60
Ep Ep)



Q 12, one shield =

Ac(Ty — T5)

(b )+ (o)
£, & €31 &3,

Q 12, Nshields

Q 12, N shields —

Ac(T; — T5) |

] | - m Q 12, no shield

(_l+_l—1)+(_l 4 —1)+~++(_1 4 —1)
&1 &r €31 &3 2 En.1 EN2

If the emissivities
of all surfaces are
equal
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Radiation Effect on Temperature Measurements

4 conv, to sensor — Y rad, from sensor
T
" WT;— Ty) = eo(T — T)
eo(Ty — T .
// L Tn = Tth + h (K)
;"} 7 '/ ‘?rzad
- ’ W= — > T; = actual temperature of the fluid, K
G, mﬁk“"‘a > 7 Ty, = temperature value measured by the thermometer, K
h | w T, = temperature of the surrounding surfaces, K
h = convection heat transfer coefficient, W/m*-K
FIGURE 13-31 & = emissivity of the sensor of the thermometer

A thermometer used to measure the
temperature of a fluid in a channel.

The last term in the equation is due to the radiation effect and represents the radiation correction.

The radiation correction term is most significant when the convection heat transfer coefficient is
small and the emissivity of the surface of the sensor is large.

Therefore, the sensor should be coated with a material of high reflectivity (low emissivity) to reduce
the radiation effect.
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: EXAMPLE 12-11 Radiation Shields

: A thin aluminum sheet with an emissivity of 0.1 on both sides is placed be-
g ween two very large parallel plates that are maintained at uniform temperatures
m /1 = 800 K and 7>, = 500 K and have emissivities g; = 0.2 and gz = 0.7, re-
m spectively, as shown in Fig. 12-32. Determine the net rate of radiation heat

® fransfer between the two plates per unit surface area of the plates and compare
: the result to that without the shield.

@ &) D
g, =02 £,=07
r=80K I=5MK

g=01
|

FIGURE 12-32
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SOLUTION A thin aluminum sheet is placed between two large parallel plates
maintained at uniform temperatures. The net rates of radiation heat transfer be-
tween the two plates with and without the radiation shield are to be determined.

Assumptions The surfaces are opaque, diffuse, and gray.

Analysis The net rate of radiation heat transfer between these two plates with-
out the shield was determined in Example 12-7 to be 3625 W/m?®. Heat trans-
fer in the presence of one shield is determined from Eg. 12-43 to be

. 012 aneshisld o(Ti — T3
& 12, one shield = 1 _L+L_|)+(L+ I _]]
-I'-_'-l EE E:-l_'l bl'l
_ (567 % 107F Wim® - K*)[(800 K)* — (500 K)*]
| l | |
(FJ“ﬁ_ ')+[ﬁ+ﬂ_ 1J
= B W/m?

64



: EXAMPLE 12-712 Radiation Effect on Temperature Measurements

: A thermocouple used to measure the temperature of hot air flowing in a duct
= Whose walls are maintained at T, = 400 K shows a temperature reading of
m I, = 650 K (Fig. 12-33). Assuming the emissivity of the thermocouple
m junction to be ¢ = 0.6 and the convection heat transfer coefficient to be h =
= 30 W/m? - °C, determine the actual temperature of the air.

o
— ol —

T, =400 K

FIGURE 12-33
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SOLUTION The temperature of air in a duct is measured. The radiation effect
on the temperature measurement is to be quantified, and the actual air
temperature is to be determined.

Assumptions The surfaces are opague, diffuse, and gray.

Analysis The walls of the duct are at a considerably lower temperature than
the air in it, and thus we expect the thermocouple to show a reading lower than

the actual air temperature as a result of the radiation effect. The actual air tem-
perature is determined from Eq. 12-46 to be

g (TE — TH

If =Tut i
sy o 06 X (567 X 1075 Wi - K9[(650 K)* — (400 K’
— L 80 W/m? - °C
— 715K

Mote that the radiation effect causes a difference of 65°C (or 65 K since °C = K
for temperature differences) in temperature reading in this case.
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RADIATION EXCHANGE WITH EMITTING
AND ABSORBING GASES

So far we considered radiation heat transfer between surfaces separated
by a medium that does not emit, absorb, or scatter radiation—a
nonparticipating medium that is completely transparent to thermal
radiation.

Gases with asymmetric molecules such as H,0, CO,, CO, SO,, and
hydrocarbons H,C, may participate in the radiation process by absorption
at moderate temperatures, and by absorption and emission at high
temperatures such as those encountered in combustion chambers.

Therefore, air or any other medium that contains such gases with
asymmetric molecules at sufficient concentrations must be treated as a
participating medium in radiation calculations.

Combustion gases in a furnace or a combustion chamber, for example,
contain sufficient amounts of H,O and CO,, and thus the emission and
absorption of gases in furnaces must be taken into consideration.

67



The presence of a participating medium complicates the radiation analysis
considerably for several reasons:

* A participating medium emits and absorbs radiation throughout its entire
volume. That is, gaseous radiation is a volumetric phenomena, and thus it
depends on the size and shape of the body. This is the case even if the
temperature is uniform throughout the medium.

* Gases emit and absorb radiation at a number of narrow wavelength bands.
This is in contrast to solids, which emit and absorb radiation over the
entire spectrum. Therefore, the gray assumption may not always be
appropriate for a gas even when the surrounding surfaces are gray.

* The emission and absorption characteristics of the constituents of a gas
mixture also depends on the temperature, pressure, and composition of
the gas mixture. Therefore, the presence of other participating gases
affects the radiation characteristics of a particular gas.

We consider the emission and absorption of radiation by
H,O and CO, only since they are the participating gases
most commonly encountered in practice.
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Radiation Properties of a Participating Medium

Consider a participating medium of thickness L. A spectral radiation beam of

intensity I,  is incident on the medium, which is attenuated as it propagates
due to absorption. The decrease in the intensity ol radiation as it passes
through a layer of thickness dx is proportional to the intensity itself and the
thickness dx. This is known as Beer’s law, and is expressed as (Fig. 13-34)
dl(x) = —« [, (x)dx (13-47)
where the constant of proportionality «, 18 the spectral absorption coeffi-
cient of the medium whose unit is m™" (from the requirement of dimensional
homogeneity). This is just like the amount of interest earned by a bank
account during a time interval being proportional to the amount of money in

the account and the time interval, with the interest rate being the constant of

proportionality.
Separating the variables and integrating from x = 0 to x = L gives
) L
— =" (13-48)
‘r}u..lil

where we have assumed the absorptivity of the medium to be independent
of x. Note that radiation intensity decays exponentially in accordance with
Beer’s law.
The spectral transmissivity of a medium can be defined as the ratio of the
intensity of radiation leaving the medium to that entering the medium. That is,
Lo
T, =T—=¢e " (13-49)
‘r}u..lil
Note that 7, = | when no radiation is absorbed and thus radiation intensity
remains constant. Also, the spectral transmissivity ol a medium represents the
fraction of radiation transmitted by the medium at a given wavelength.

Lo I (x) L

o [

FIGURE 13-34

The attenuation of a radiation beam
while passing through an absorbing
medium of thickness L.
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Radiation passing through a nonscattering (and thus nonreflecting) medium
is either absorbed or transmitted. Therefore v, + 7, = 1, and the spectral
absorptivity of a medium of thickness L is

a,=1—7,=1—¢"L (13-50)
From Kirchoff’s law, the spectral emissivity of the medium is
g, =a,=1— et (13-51)

Note that the spectral absorptivity, transmissivity, and emissivity of a medium
are dimensionless quantities, with values less than or equal to 1. The spectral
absorption coefficient of a medium (and thus ¢,, «,, and 7,), in general, vary
with wavelength, temperature, pressure, and composition.

For an optically thick medium (a medium with a large value of kL),
Eq. 13-51 gives ¢, = a, = 1. For x,L = 35, for example, &, = a, = 0.993.
Therefore, an optically thick medium emits like a blackbody at the given
wavelength. As a result, an optically thick absorbing-emitting medium with no
significant %mttering at a given temperature 7, can be viewed as a “black sur-
face™ at T, since it will absorb essentially all the radiation passing through it,
and 1t mll emit the maximum possible radiation that can be emitted by a sur-

face at T,, which is L, (T,).

L':H
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Emissivity and Absorptivity of Gases and Gas Mixtures

The various peaks and dips in the figure together with discontinuities show clearly
the band nature of absorption and the strong nongray characteristics. The shape
and the width of these absorption bands vary with temperature and pressure, but
the magnitude of absorptivity also varies with the thickness of the gas layer.
Therefore, absorptivity values without specified thickness and pressure are
meaningless.

Band designation A, LLm FIGURE 13-35
15 4.3 Spectral absorptivity of CO, at 830 K
L0 rﬁ/ 2.7 and 10 atm for a path length of 38.8 cm
0.8
e*ﬁt‘
= 0.6
£
5 2.0
Z 04t
-
0.2+
4 AN . | | |
20 108 6 3 4 3 2.5 2 1.67 71

Wavelength A, im



The emissivity of H,O vapor in a mixture of nonparticipating gases is plot-
ted in Figure 13-36a for a total pressure of P = 1 atm as a function of gas
temperature T, for a range of values for P,, L, where P, is the partial pressure
of water vapor and L is the mean distance traveled by the radiation beam.
Emissivity at a total pressure P other than P = 1 atm is determined by multi-
plying the emissivity value at 1 atm by a pressure correction factor C,
obtained from Figure 13-37a for waler vapor. That is,

Ew = (-IH'Eﬁ-.'_ I atm (13-52)

Note that C,, = 1 for P = 1 atm and thus (P, + P)/2 = 0.5 (a very low concentra-
tion of water vapor is used in the preparation of the emissivity chart in Fig. 13-36a
and thus P, is very low). Emissivity values are presented in a similar manner for
a mixture of CO, and nonparticipating gases in Figs. 13-36b and 13-37b.

Now the question that comes to mind is what will happen if the CO, and
H,O gases exist fogether in a mixture with nonparticipating gases. The emis-
sivity of each participating gas can still be determined as explained above
using its partial pressure, but the effective emissivity of the mixture cannot be
determined by simply adding the emissivities of individual gases (although
this would be the case if different gases emitted at different wavelengths).
Instead, it should be determined from

g, =g+ e, Ac

—

- L'H-'.'_ | atm

+ C,.e — Ae (13-53)

w, | atm
where Ag is the emissivity correction factor, which accounts for the overlap
of emission bands. For a gas mixture that contains both CO, and H,O gases,
Ae is plotted in Figure 13-38.
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The emissivity of a gas also depends on the mean length an emitted radia-
tion beam travels in the gas before reaching a bounding surface, and thus the
shape and the size of the gas body involved. During their experiments in the
1930s, Hottel and his coworkers considered the emission of radiation from a
hemispherical gas body to a small surface element located at the center of the
base of the hemisphere. Therefore, the given charts represent emissivity data
for the emission of radiation from a hemispherical gas body of radius L toward
the center of the base of the hemisphere. It 1s certainly desirable to extend the
reported emissivity data to gas bodies of other geometries, and this is done by
introducing the concept of mean beam length L, which represents the radius
of an equivalent hemisphere. The mean beam lengths for various gas geome-
tries are listed in Table 13—4. More extensive lists are available in the literature

Following a procedure recommended by Hottel, the absorptivity of a gas
that contains CO, and H,O gases for radiation emitted by a source at temper-
ature T, can be determined similarly from

a, = a, + a,, — A« (13-54)

where Aa = Ag and is determined from Figure 13-38 at the source tempera-
ture 7,. The absorptivities of CO, and H,O can be determined from the emis-
sivity charts (Figs. 12-36 and 12-37) as

CO»: o, = C. X | Tg;’ﬂ}“'ﬁﬁ X elT, P. LT/ T,) (13-55)

i i
and

H,0: ay, = C,, X (T,/ T)"5 X g T, P LT/T,) (13-56)
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The notation indicates that the emissivities should be evaluated using 7|
instead of 7, (both in K or R), P_ LT, /T, instead of P.L, and P,, LT /T, instead
of P, L. Notc that the ’Lbsmpnwty of the gas dcpcnds on the source tempen-
ture T as well as the gas temperature 7,. Also, &« = & when T, = T,
expected. The pressure correction factors C and C,, are evaluated using P L
and P,, L, as in emissivity calculations.

When the total emissivity of a gas &, at temperature 7, is known, the emis-
sive power of the gas (radiation emitted by the gas per unit surface area) can
be expressed as E, = al?an4 Then the rate of radiation energy emitted by a
gas to a bounding eurfm,e of area A; becomes

Qpe=eA0T, (13-57)

It the bounding surface is black at temperature T, the surface will emit radia-
tion to the gas at a rate of Ao T,* without reflecting any, and the gas will
absorb this radiation at a rate of a,A T2, where a, 1s the absorptivity of the
gas. Then the net rate of mdntmn heat transfer between the gas and a black
surface surrounding it becomes

Black enclosure: Onet = Ayor(e, T3 — agTdh) (13-58)

If the surface is not black, the analysis becomes more complicated because of

the radiation reflected by the surface. But for surfaces that are nearly black
with an emissivity g, > 0.7, Hottel (1954), recommends this modification,

. e+ 1 . g, + 1 A "
f;.'}I]Cl.yI'LI:\ = {-.) net, black — - _1.. aole u? g {-l..:;_:?_g ) (13-59)

7

The emissivity of wall surfaces of furnaces and combustion chambers are typ-
ically greater than 0.7, and thus the relation above provides great convenience
for preliminary radiation heat transfer calculations.
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FIGURE 13-36

Emissivities of H,O and CO, gases in a mixture of nonparticipating gases at a total pressure of 1 atm for a
mean beam length of L (1 m-atm = 3.28 ft-atm)
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FIGURE 13-37
Correction factors for the emissivities of H,O and CO, gases at pressures other than 1 atm for use in the relations
Ep = Ch&y 1am and &, = C.g_ | 4 (1 m-atm = 3.28 ft-atm)
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FIGURE 13-38

Emissivity correction Ae for use in &,

= g, + &.— Ae when both CO, and H,O vapor are present in a gas

mixture (1 m-tm = 3.28 ft-atm)
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TABLE 13-4

Mean beam length L for various gas volume shapes

Gas Volume Geometry L
Hemisphere of radius R radiating to the center of its base R
Sphere of diameter D radiating to its surface 0.65D
Infinite circular cylinder of diameter D radiating to curved surface 0.95D
Semi-infinite circular cylinder of diameter D radiating to its base 0.65D
Semi-infinite circular cylinder of diameter D radiating to center of

Its base 0.90D
Infinite semicircular cylinder of radius R radiating to center of

its base 1.26R
Circular cylinder of height equal to diameter D radiating to

entire surface 0.60D
Circular cylinder of height equal to diameter D radiating to center

of its base 0.71D
Infinite slab of thickness D radiating to either bounding plane 1.80D
Cube of side length L radiating to any face 0.6e6L
Arbitrary shape of volume V and surface area A, radiating to surface 3.6V//A,
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: EXAMPLE 12-13 Effective Emissivity of Combustion Gases

: A cylindrical furnace whose height and diameter are 5 m contains combustion
g 2ases at 1200 K and a total pressure of 2 atm. The composition of the com-
m Dustion gases is determined by volumetric analysis to be 80 percent N, 8 per-

m cent HO, 7 percent O,, and 5 percent CO,. Determine the effective emissivity
m of the combustion gases (Fig. 12-39).

A

f
|£;r=:.m T, = 1200K

N

FIGURE 12-39
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~ SOLUTION The temperature, pressure, and composition of a gas mixture is
given. The emissivity of the mixture is to be determined.

Assumptions 1 All the gases in the mixture are ideal gases. 2 The emissivity
determined is the mean emissivity for radiation emitted to all surfaces of the
cylindrical enclosure.

Analysis The volumetric analysis of a gas mixture gives the mole fractions y, of
the components, which are equivalent to pressure fractions for an ideal gas mix-
ture. Therefore, the partial pressures of CO, and H,0 are

P_ = ypp P = 0.05(2 atm) = 0.10 atm
F‘H-' = }IH:BP = D_UE[:E ﬂ.tm:l = ﬂ-]ﬁ‘-ﬂ.tm

The mean beam length for a cylinder of equal diameter and height for radiation

emitted to all surfaces is, from Table 12-4,

L=060D=060{3m)=3m
Then,

P_L = {0.10 atm}3 m) = 0.30 m - atm = (L98 ft - atm
P L =(0.16 atm)(3 m) = 0.48 m - atm = 1.57 ft - atm

The emissivities of CO> and H;O commesponding to these values at the gas tem-
perature of Tg = 1200 K and 1 atm are, from Figure 12-36,

& um =016 and &, . =023

These are the base emissivity values at 1 atm, and they need to be corrected for
the 2 atm total pressure. Noting that (P, + P¥2 = (0.16 + 2)¥2 = 1.08 atm,
the pressure correction factors are, from Figure 12-37,

C.= 1.1 and C, = 1.4

[
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Both CO- and H;O are present in the same mixture, and we need to correct for
the overlap of emission bands. The emissivity correction factor at T = T, =
1200 K is, from Figure 12-38,

P.L+P,L=098+ 1.57 = 2.55

F 0.16 Ae = (L0435

P.+P. _016+010 °o1

Then the effective emissivity of the combustion gases becomes

g, = Coe jum T oty am — A= 11 X016 + 1.4 X 023 — 0.048 = .45
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: EXAMPLE 12-74  Radiation Heat Transfer in a Cylindrical Furnace

® Reconsider the cylindrical furnace discussed in Example 12-13. For a wall
g emperature of 600 K, determine the absorptivity of the combustion gases and
m the rate of radiation heat transfer from the combustion gases to the furnace
m walls (Fig. 12-40).

Y=

| D=|5m |

L

nrr

FIGURE 12-40
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" SOLUTION The temperatures for the wall surfaces and the combustion gases
are given for a cylindrical furnace. The absorptivity of the gas mixture and the
rate of radiation heat transfer are to be determined.

Assumptions 1 All the gases in the mixture are ideal gases. 2 All interior
surfaces of furnace walls are black. 3 Scattering by soot and other particles is
negligible.

Analysis The average emissivity of the combustion gases at the gas tempera-
ture of T, = 1200 K was determined in the preceding example to be g; = 0.45.

For a source temperature of T, = 600 K, the absorptivity of the gas is again
determined using the emissivity charts as

- 600K _ c _ .
PL ?:g = (.10 atm}¥3 m) 1700 K 0.15 m - atm = 0.49 ft - atm
600 K
P.L T = (.16 atm}¥3 m) 00K 0.24 m - atm = .79 ft - atm

£

The emissivities of CO; and H;O corresponding to these values at a temperature
of 7. = 600 K and 1 atm are, from Figure 12-36,

Ec | um = 0.11 and Ey 1 mm — 0.25

The pressure correction factors were determined in the preceding example to be
C.= 1.1and C,= 1.4, and they do not change with surface temperature. Then
the absorptivities of CO, and H,0 become

v LG5

T, 065
u:'__=l:c(i) clm—(l]}(ﬁmﬁ (0.11) = 0.19

T 4 045 00 K\
o, = c(%) £ 1 aum = (1 4}( mx) (0.25) = 0.48

83



Also Ax = Ae, but the emissivity commection factor is to be evaluated from
Figure 12-38 at T = 7, = 600 K instead of T, = 1200 K. There is no chart
for 600 K in the figure, but we can read Ae values at 400 K and 80O K, and
take their average. At P /AP, + P = 0.615and FP.L + F,L = 2.55 we read
Ae = 0.027. Then the absorptivity of the combustion gases becomes

w, = a. t+a, — Aa=0.19 + 048 — 0.027 = 0.64

The surface area of the cylindrical surface is

wh? w(5 m)*

A, =nDH + 2 3 = w3 m}5 m) + 2 3 = 118 m?

Then the net rate of radiation heat transfer from the combustion gases to the
walls of the furnace becomes

Qm = .."'JI._I.I.:I'[:ER_T; — uﬁTf
= (118 m*N5.67 * 1078 Wim? - K*)[0.45(1200 Ky — 0.64(600 K)*]
=279 % 1AW
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